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1. INTRODUCTION

The fact that defects cause changes in the dynamic characteristic of a structure has been
widely used for safety inspection and control of production. The basic idea of
non-destructive damage detection is to measure this dynamic characteristic during the
lifetime of the structure and use it as a basis for the identi"cation of structural damage.

The standard procedure involves conducting several vibration surveys on the structural
system. The "rst one is conducted preferably before any important structural damage has
occurred. This "rst test is then utilized as a baseline, and all subsequent tests are compared
to it. Deviation of the tests results from the baseline provides an indication of structural
damage. From this mismatch, procedures have been developed to estimate both the
location and the extent of structural damage.

The aim of this paper is to examine how damage indicators are sensitive to changing
number of frequencies and mode shapes and also to number and location of measurement
points. The in#uence of measurement errors was also analyzed for all cases. For the
analysis, those damage indicators are chosen which use changes in such modal parameters
as natural frequencies and mode shapes and also di!erences between the curvatures of the
damaged and undamaged structures in a given frequency range. All numerical calculations
are based on a mathematical model of a cracked beam presented by Ostachowicz and
Krawczuk [1].

2. NATURAL VIBRATIONS

Natural vibrations, as a solved description of a structure's physical characteristics (in
terms of its mass, sti!ness and damping), describe the behaviour of the structure as a set of
natural frequencies with corresponding mode shapes and modal damping factors. This
solution always describes the various ways in which the structure is particularly sensitive to
vibrations and possible resonances.
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2.1. NATURAL FREQUENCIES

Changes in natural frequencies if any may be called the classical damage indicators. They
are without any doubt the most used damage indicators both formerly and nowadays. The
main reason for their great popularity is that natural frequencies are rather easy to
determine with a relatively high level of accuracy. In fact, one sensor placed on a structure
and connected to a frequency analyzer gives estimates for several natural frequencies.
Further, natural frequencies are sensitive to all kinds of damage*local and global.

2.1.1. Cawley}Adams criterion

One of the "rst methods that claimed to be able to detect damage in an elastic structure
by using natural frequencies was introduced by Cawley and Adams [2]. They proposed
a method of predicting the site of damage based on changes in the natural frequencies.

The main idea of this method is that the change in sti!ness is independent of frequency
and the ratio of frequency in two modes is therefore only a function of the damage location.
Positions where this theoretically determined ratio equals the experimentally measured
value are therefore possible damage sites. In summary, a matching error, e

s
(p, q), associated

with any pair of modes, p and q, at a possible damage site, s, can be found from the following
formulae:
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where du
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(s) is the theoretical prediction of the change in the natural frequency for mode

p with damage at location s and dX
p
is the actual change in the natural frequency for mode

p with unknown damage. The total matching error for all mode pairs is
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The predicted damage location is indicated by the minimum value using
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It will be seen that the predicted damage location is indicated by E
s
"1.

It follows from equation (1) that if the actual damage on the structure is identical to one of
the cases in the database and the measurements are free of errors, then the algorithm will
always predict the exact location correctly.

2.1.2. Damage location assurance criterion (D¸AC)

The next criterion based on changes in natural frequencies is damage location assurance
criterion (DLAC). This criterion is proposed by Messina et al. [3] in the following form:
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where MdXN is the trial &&experimental'' frequency change vector and Mdu
s
N is the theoretical

frequency change for damage at location s. DLAC values lie in the range 0}1, with
0 indicating no correlation and 1 indicating an exact match between the patterns of
frequency changes. The value of s giving the highest DLAC values determines the predicted
damage site.

The use of percentage frequency change data (rather than absolute changes) provides the
best results.

Problems remain when the level of damage is low. The presence of measurement error
will result in a degradation of the ability to predict the damage site accurately. Nevertheless,
experience shows that the method is capable of giving a prediction with su$cient con"dence
to give a useful warning of a problem. If the predicted site is con"rmed by subsequent
measurements, then the method will still be seen as a valid early warning exercise.

2.2. MODE SHAPES

The mode shape is a unique characteristic of a mechanical structure and it is known as
the spatial description of the amplitude of each resonance. It is common knowledge that
local damage will cause a change in the derivatives of the mode shapes at the position of the
damage. The idea of using the mode shape as a damage indicator is to detect the change of
mode shapes obtained from successive tests. This fact has resulted in an increase of changes
in mode shapes as damage indicators.

Unfortunately, to get estimates of the mode shape one has to perform a measurement at
each of the points where estimates are wanted. Thus, the duration of a measurement session
will increase considerably if a detailed mode shape were estimated. This is probably the
main disadvantage in using mode shapes as damage indicators.

2.2.1. Modal assurance criterion

In several publications, it was suggested that it is possible to apply other criteria based on
measurements of mode shapes. The "rst is the modal assurance criterion (MAC), a simple
quantitative method for comparing mode shapes, which is de"ned as [4]
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where /
i

and /
j

are two eigenvectors of a discrete system or two eigenfunctions for
a continuous system. This calculation, a scalar product between two complex unit vectors,
results in a single number. The MAC is a correlation which varies between 0 and 1. A value
of 1 indicates identical shapes*the constructional element is uncracked, and 0 indicates
that they are orthogonal to and very unlike one another.

Although it indicates that there is a disparity between the two sets of data, it does show
explicitly where the source of the discrepancy in the structure lies.

The MAC principle can be extended in several ways; thus, increasing its "eld of
applications. Obviously, it is of greater importance to know the position, or at least the region,
of the error rather than the modes which contribute to the lack of overall correlation.

2.2.2. Co-ordinate modal assurance criterion

The Co-ordinate modal assurance criterion (COMAC) identi"es the co-ordinates at
which two sets of mode shapes do not agree. The COMAC factor at a point i between two
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sets of the mode shape in states A(/A) and B(/B) is de"ned by [5]
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where N is the number mode shapes, /A
i,j

and /B
i,j

denote the values of jth mode shape at
a point i for the states A and B respectively.

The COMAC has been developed from the original MAC concept in such a way that the
correlation is related to degrees of freedom of the structure rather than to the mode
numbers. The resultant COMAC values have been shown to be of considerable help in
showing where the errors on the structure occur.

From the literature it emerges that the MAC and COMAC are highly dependent on the
geometry of a structure and the location of damage. It is also proved that these criteria are
not sensitive enough to detect damage at the earlier stage.

3. FORCED VIBRATIONS

Forced vibration allows one to analyze how the structure will vibrate under a given
excitation, especially with what amplitudes. Clearly, this will depend not only upon the
structure's inherent properties but also on the nature and magnitude of the imposed
excitation. To obtain this information, frequency response functions (FRFs) are used, which
express the relationship between the response (displacement (xj), velocity or acceleration) at
point j and a given load Fk at point k. For a multi-degree-of-freedom system the general
element in the FRF matrix is de"ned as follows:

a
ij
(u)"

xj(u)

Fk (u)
, (7)

where a
ij
(u) is the FRF of the system.

3.1. THE FREQUENCY RESPONSE CURVATURE METHOD

This method is based on the di!erences between the curvatures of the damaged and
undamaged structures in a given frequency range to assess the damage [6]. This method has
the advantage of simplicity and has no need for modal identi"cation.

In this method, the curvature for each frequency can be computed by a central di!erence
approximation, given by
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where h is the distance between locations and a
i, j

is the receptance measured at location i for
a force input at location j.

The absolute di!erence between the FRF curvatures of the damaged and undamaged
structures at location i, along the chosen frequency range, is calculated for an applied force
at point j:
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Finally, it can be summed up that for several force location cases:

RDaA"+
+

*aA
i, j

. (10)

4. MATHEMATICAL MODEL OF THE CRACKED BEAM

In this section, the mathematical model of the cracked beam used in numerical tests will
be presented. The physical model of such a beam is shown in Figure 1. The beam is divided
into two segments connected by an elastic element, the sti!ness of which is calculated
according to the law of fracture mechanics (see reference [1]).

The equation of natural vibration for a Bernoulli}Euler beam is as follows:

EI
L4y (x, t)

Lx4
#oF

L2y(x, t)

Lt2
"0, (11)

where o is the material density, F denotes the cross-sectional area of the beam, y (x, t) is the
the de#ection of the beam, I the geometrical moment of inertia of the beam cross-section
and E is Young's modulus.

The solution of equation (11) is sought in the form

y(¸, t)"y (¸) sinut, (12)

where ¸"x/l.
Substituting this solution into equation (11), and after a simple algebraic transformation,

one has

yIV(¸)!k4y(¸)"0, (13)

where

k4"u2oF/l4EI. (14)

Taking the function y(¸) in the form of a sum of two functions,
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Figure 1. The model of a cracked beam, with a crack at l
p

location.
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The boundary conditions in terms of the non-dimensional beam length ¸p"x/l, can be
expressed as follows:
y
1
(0)"0*zero displacement of the beam at the restraint point,
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)*compatibility of the shearing forces at the location of the crack,

y@@
2
(1)"0*zero bending moment at the end of the beam,

y@@@
2
(1)"0*zero shearing force at the end of the beam.

Taking into account the boundary conditions, one obtains the characteristic equation
which can be solved to determine the characteristic roots:

det K
C 0

D E

0 F K" 0. (17)

The submatrices C, D, E and F of the characteristic matrix have the following forms:

C"C
0 1 0 1

1 0 1 0D , (18)

D"
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E"
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F"C
cosh(k) sinh(k) !cos(k) !sin(k)

sinh(k) cosh(k) sin(k) !cos(k)D , (21)

where A"k )¸
p
, B"h ) k and h denotes the beam #exibility at the crack location.
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The roots k
i
of the characteristic equation are used for the calculation of the natural

vibration frequencies
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where u
i
is the ith natural frequency of the beam and k

i
is the ith characteristic root.

5. EXAMPLE RESULTS

All numerical tests were carried out for a cantilever beam with dimensions as follows: the
length 1 (m), the height 0)01 (m), the width 0)01 (m), Young's modulus 210 (GPa), and mass
density 7860 (kg/m3). For all numerical tests, it was assumed that modal parameters for the
cracked beam were known. The aim of the searching process was to "nd the location and
depth of the crack from the whole possible range of damage location (0}1 (m)) and depth
(0}0)006 (m)) using di!erent damage indicators. For all examples, it was assumed that the
location and depth of the crack correlate with the maximum value of the function describing
the examined criterion.

Those criteria which use natural vibration parameters were examined as functions of the
number of natural frequencies and the number of measurement points (for estimating mode
shapes). Great interest was also put on examining the in#uence of the measurement error on
the accuracy of predicting the damage location.

Damage indicators based on changes in forced vibrations were examined as functions of
the parameters of the excitation force and number of measurement points. As for natural
vibrations, great interest was put on examining the in#uence of the measurement error on
the accuracy of predicting the damage location. The results of numerical calculations are
shown in Figures 2}7.

Figure 2 presents the results for the Cawley}Adams criterion. The crack with depth equal
to 30% of the beam height was located 0)8 (m) from the "xed end of the beam. The "rst
column shows the results for the "rst two and "rst four natural frequencies without
measurement errors. The second column presents the results for two and four natural
frequencies with measurement error. The "rst frequency was measured with !1% error;
the second with #1)5% error, the third with !2)5% error and the fourth with #2%
error. From Figure 2 it can be seen that when there are no measurement errors the crack
parameters are precisely found both for two and four natural frequencies. Measurement
errors resulted in crack parameters (marked as location and depth in Figure 2(b)) being
properly found only for four natural frequencies.

Figure 3 presents the result for the DLAC criterion. In this example, the crack with depth
equal to 20% of the beam height was located 0)8 (m) from the "xed end of the beam. The
"rst column shows results for the "rst two and "rst four natural frequencies without
measurement errors. The second column presents results for two and four natural
frequencies with measurement errors. The "rst frequency was measured with !0)1% error,
the second with #0)15% error, the third with !0)25% error and the fourth with #0)2%
error. From Figure 3 it can been seen that even very small measurement errors cause
improper prediction of damage parameters (marked as depth and location in Figures 3(b)).

Figure 4 illustrates the results for the MAC criterion obtained for the crack with depth
equal to 15% of the beam height and located 0)1 (m) from the "xed end of the beam. In this
case, the in#uence of measurement error was not analyzed. The "rst column shows the
results for four mode shapes, the second for two mode shapes. The number of mode shapes
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used for the process of damage assessing does not in#uence the accuracy of the results
obtained. The location and depth of the crack (marked as location and depth in Figure 4(b))
were properly found for four as well as for two mode shapes.

Example calculations for the COMAC criterion are shown in Figure 5. The crack
analyzed in this example had a depth equal to 15% of the beam height and was located 0)9
(m) from the "xed end of the beam. In this case, the in#uence of measurement error was not
analyzed. The "rst column shows the results calculated for four mode shapes, the
second*for two mode shapes estimated by ten points. The lower number of mode shapes
used for the COMAC criterion does not seem to in#uence the damage parameter prediction
process; however, for two mode shapes the results are not as clear as for four mode shapes.

Figures 6 and 7 present example results for the FRCM criterion. In the "rst case, the
crack with depth equal to 20% of the beam height, located 0)8 (m) from the "xed end of the
beam was analyzed. The left column shows the results of calculation without taking into
account the measurement errors. In the results in the right column a #2% measurement
error of the excitation force amplitude was analyzed. The curvatures were obtained for
seven and three measurement points, uniformly located along the beam. It is easily seen that
if more measurement points are taken into consideration, the prediction of the crack
location and depth is clearer. The excitation force error causes disturbances in assessing the
location of the crack (see Figure 6(b) where the location and depth denote crack parameters
obtained as a result of the searching process).

In the second numerical example for the FRCM criterion, the analyzed crack parameters
are the same as in the previous example. The left column of Figure 7 presents results without
the measurement error whilst the right column presents results obtained for #5% error in



Figure 3. DLAC criterion: (a) without measurement errors, (b) with Df
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Figure 4. MAC criterion: (a) four mode shapes and (b) two mode shapes.
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curvatures. Measurements were done at seven and three points uniformly located along the
beam. It is easily seen that if more measurement points are taken into the numerical
calculations, the prediction of the crack location and depth is better. Measurement errors
cause disturbances in proper assessment of the crack location for a lesser number of
measurement points (see Figure 7(b)).



Figure 5. COMAC criterion: (a) four mode shapes and (b) two mode shapes.

Figure 6. FRCM: (a) without measurement error and (b) with excitation force amplitude measurement error
#2%.
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6. CONCLUSIONS

Taking into account the results of the numerical investigations the following conclusions
can be drawn:

FOR CA CRITERION

f An increasing number of frequencies gives a better damage location prediction, locating
damage with two natural frequencies only for measurements without errors,



Figure 7. FRCM: (a) without measurement error and (b) with curvature measurement error #5%.
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f the method is very sensitive for even small errors in measured frequencies ($0)1%) when
cracks are lesser than 20% of the height of the beam; for bigger cracks, the in#uence of the
measurement error does not disturb proper damage location estimation, especially when
a relatively high number of frequencies is known ('4).

FOR DLAC CRITERION

f An increasing number of frequencies in the numerical calculations gives a de"nitely better
damage location prediction,

f there is a bigger chance of overestimating the damage location in comparison with CA
criterion,

f this criterion is very sensitive even for very small frequency measurement errors (0)1%).

FOR MAC AND COMAC CRITERIA

f The damage location prediction is clearer when more than two mode shapes are taken
into consideration,

f when the MAC and COMAC criteria are built from two mode shapes the results do not
depend on the number of the modes which are used (it means that if the "rst and second
mode shapes are taken into account, the result is the same as, for example, for the second
and fourth mode shapes),
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f for the MAC criterion a smaller number of points of the examined mode shapes gives
a slightly worse damage location prediction, whereas the COMAC criterion seems to be
more resistant to such limitation.

FOR FRCM CRITERION

f An increasing number of measurement points always gives better damage location prediction,
f measurement errors of the exciting force amplitude do not allow one to predict the crack

parameters properly for a small number of measurement points,
f curvature measurement errors (even bigger than 1%) do not in#uence the process of

predicting the crack parameters much.

On the basis of the above-mentioned numerical investigation, one can conclude that each
one of the examined methods gives a proper estimation for relatively large disturbances in
the structure (more than 20% of the height of the beam). The accuracy of the obtained
numerical results depends on the level of precision during modal parameter measurement.
Recent scienti"c research shows that the wavelet analysis methods [7, 8], as well as analysis
of mechanical wave propagation in structures [9, 10] are more promising in the detection of
very small cracks (even 0)5% of the height of the beam). The above-mentioned methods with
genetic algorithms shorten the time needed for obtaining a satisfactory solution [11, 12].
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